Algebra Qualifying Exam II (May 2023)

You have 120 minutes to complete this exam.

1. (10 points) Let A be an integral domain and let M be a finitely generated torsion module over A. Prove that there is a nonzero element $a \in A$ such that $a m=0$ for all $m \in M$.
2. (10 points) Give an example of three modules A, B and C over a principal ideal domain (PID) such that the sequence

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

is exact, but B is not isomorphic to $A \oplus C$.
3. (10 points) Prove that the quotient group \mathbb{R} / \mathbb{Z} is an injective abelian group.
4. (10 points) Note that the set of 2×2 upper triangular matrices

$$
A:=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{C}\right\}
$$

forms a ring under the usual matrix addition and multiplication. Consider the subsets

$$
\begin{aligned}
M_{1} & :=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right) \right\rvert\, a \in \mathbb{C}\right\} \\
M_{2} & :=\left\{\left.\left(\begin{array}{ll}
0 & b \\
0 & c
\end{array}\right) \right\rvert\, b, c \in \mathbb{C}\right\} .
\end{aligned}
$$

(a) Prove that M_{1} and M_{2} are both left ideals of A.
(b) Prove that M_{1} and M_{2} are both projective left modules over A.
5. (10 points) Compute the group

$$
\operatorname{Ext}_{\mathbb{Z}}^{1}(\mathbb{Z} / 12, \mathbb{Z} / 18)
$$

6. (10 points) Recall the principal ideal domain of Gaussian integers

$$
\mathbb{Z}[\sqrt{-1}]:=\{a+b \sqrt{-1} \mid a, b \in \mathbb{Z}\}
$$

Let $J \in \mathrm{GL}_{n}(\mathbb{Z})$ be an integer matrix such that

$$
J^{2}=-I_{n},
$$

where I_{n} is the identical matrix. We view \mathbb{Z}^{n} as a module over $\mathbb{Z}[\sqrt{-1}]$ such that

$$
\forall a+b \sqrt{-1} \in \mathbb{Z}[\sqrt{-1}], \forall \vec{v} \in \mathbb{Z}^{n}, \quad(a+b \sqrt{-1}) \cdot \vec{v}:=a \vec{v}+b J \vec{v}
$$

(a) Prove that \mathbb{Z}^{n} is a free module over $\mathbb{Z}[\sqrt{-1}]$.
(b) Determine the rank of \mathbb{Z}^{n} as a module over $\mathbb{Z}[\sqrt{-1}]$.

